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ABSTRACT

Offspring probabilities for a cattle breeding population were calculated from 
historical genotypic data on closely-linked single nucleotide polymorphisms 
(SNPs) using a “haplotype-centric” approach. The number of haplotypes 
and their corresponding frequencies were estimated using manual parsimony 
methods and the probability-based methods of HAPLOVIEW (ver. 3.32) and 
PHASE (ver. 2.1). All methods identified the same set of haplotypes in the pop-
ulation. The Bayes theorem was applied on calculated haplotype frequencies to 
determine probable haplotypes and their corresponding frequencies for cases 
of incomplete genotype information (i.e. two out of six loci genotyped), with 
the assumption of Hardy-Weinberg equilibrium and the absence of recombi-
nation. The most probable haplotype frequencies for each incomplete genotype 
allowed the prediction of offspring probabilities for all possible crosses between 
individuals. Results show that the minimal set of haplotypes in a population 
can be determined by different methods. Moreover, the true haplotype of an 
individual can be predicted even when only a fraction of the SNPs was geno-
typed by applying Bayesian statistics on the known haplotype frequencies in 
the population. 
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INTRODUCTION

 Single nucleotide polymorphisms (SNPs) are used as molecular markers in high-
density arrays because of their association with traits of economic interest in livestock 
(Schmid and Bennewitz 2017). Genetic marker panels in “SNP chips” are available for 
cattle (Dash et al., 2018), swine (Bertolini et al., 2018), chickens (Huang et al., 2018), water 
buffalo (Iamartino et al., 2017), and goats (Qiao et al., 2017). Furthermore, genotyping-
by-sequencing allows for the identification of SNP genotypes in animal species with no 
commercially-available SNP chips (Zhu et al., 2016). Candidate gene alleles are characterized 
by multiple SNPs associated with varying biological effects. A set of SNP genotypes can be 
analyzed as an individual haplotype on a chromosome (Niu, 2004). The “haplotype-centric” 
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approach is limited by the non-independent inheritance of markers, the problematic phase 
determination for large loci numbers, and the minimum number of initially identified 
haplotypes. 
 Haplotypes from unphased genotype data can be inferred by various algorithms that 
are classified based on the underlying statistical method (Schmid and Bennewitz, 2017). 
Parsimony algorithms are deterministic rule-based methods that can quickly assign the least 
number of haplotypes from observed genotypes. Pairwise haplotypes have been determined 
in cattle using parsimony (Banos and Coffey, 2010). Expectation-maximum (EM) and 
Bayesian methods are stochastic statistical approaches, which are based on likelihood or 
conditional probability; these computationally exhaustive methods are suitable for complex 
pedigrees and have been applied in cattle populations by Zhang et al. (2016) and Krag et al. 
(2013), respectively. 
 This study aimed to infer the SNP haplotypes for a breeding population by applying 
parsimony, EM, and Bayesian algorithms. Conditional probabilities of haplotypes were 
determined from calculated haplotype frequencies for a set of observed SNP genotypes. The 
resulting probabilities were used to calculate offspring probabilities. The study supports the 
value of including SNP genotypes to predict linked offspring traits.

MATERIALS AND METHODS

 The genotype data of six closely-linked SNPs in the leptin gene were obtained for 
535 unrelated individuals in a cattle (Bos taurus) breeding population at the Roslin Insti-
tute, UK were used in this study (Table 1). The archival data was assumed to be correct 
and free of errors; the individuals were genotyped as described by Wooliams et al. (2006). 
Allele and genotype frequencies were calculated for the dataset, with each locus checked 
for Hardy-Weinberg equilibrium (HWE). The allele frequencies p and q are expected to 
remain constant over each generation for a biallelic locus in HWE, such that expected 
genotype frequencies (E) can be predicted using the equation p2 + 2pq + q2 = 1. Observed 
genotype frequencies for each SNP (O) were tested for HWE using the χ2 goodness-of-fit 
test (Weir, 1996), with one degree of freedom at a 95% confidence interval, as: 

The P-values for χ2 were subsequently computed in Microsoft Excel.
 The minimum number of haplotypes and their corresponding frequencies were de-
termined by applying the parsimony algorithm of Clark (1990). The initial set of “resolved” 
haplotypes was determined from homozygote individuals without missing data. The single 
heterozygotes were used determine unresolved genotypes that are composites of a known 
haplotype and a complementary haplotype. Complementary haplotypes that segregate in 
the population were added to the list of “resolved” haplotypes. This process was sequen-
tially performed for all genotypes in the data set. Haplotypes were inferred from data with 
missing alleles to account for genotypes in the data set that could not be explained by the 
“resolved” haplotypes alone. The minimum number of haplotypes required to resolve the 
observed genotypes, along with their corresponding haplotype frequencies were computed.

117



Aquino and Mata

 Table 1. Genotype frequencies for 6 SNPs and χ2 test for HWE for 535 individuals.

Locus Alleles 
(1)/(2)

Minor 
Allele 
Freq 

(MAF)

Minor 
Allele

Genotype Frequencies* Test for HWE

(1) (1) (1) (2) (2) (2) χ2 P-value

SNP1 T/C 0.4701 C 0.2617 0.4991 0.2206 0.2786 0.8700
SNP2 A/G 0.3505 G 0.4187 0.4467 0.1271 0.2187 0.8964
SNP3 G/A 0.3430 A 0.4000 0.4393 0.1234 0.2428 0.8857
SNP4 A/G 0.0935 G 0.7832 0.1607 0.0131 0.0834 0.9591
SNP5 C/G 0.0252 G 0.9458 0.0505 0.0000 0.0282 0.9860
SNP6 A/G 0.3486 G 0.4262 0.4505 0.1234 0.2198 0.8959

*NOTE: (1)(1) for homozygous for major allele, (1)(2) for heterozygous, and (2)(2) for homozygous for minor 
allele. 

Haplotyping was performed on the same dataset using HAPLOVIEW (ver. 3.32) (Barrett et 
al., 2005). All the individuals in the analysis were included by setting the minimum num-
ber of allowed missing genotypes to >50%. Preliminary marker checks were performed, 
including an exact test for HWE (Wigginton et al., 2005). An accelerated EM algorithm 
based on the partition/ligation method by Qin et al. (2002) estimated gamete frequencies of 
phased haplotypes based on the maximum likelihood of unphased genotype data. Haplotype 
frequencies greater than 0.01% were also computed. A linkage disequilibrium (LD) plot was 
constructed from all pairwise computations of the D’ statistic (Weir, 1996). 
 A model-based Bayesian method was used in PHASE (ver. 2.1) to compute the dis-
tribution of unobserved haplotypes from the observed genotype data (Stephens and Scheet, 
2005). Analysis was performed for 200,000 iterations with a burn-in period of 100,000 and 
a thinning interval of 100 between iterations.
 The most likely haplotypes for genotypes with incomplete marker information 
was determined using Bayesian statistics, with the haplotype frequencies computed by 
HAPLOVIEW used as prior information. Given the current set of haplotypes (n = 9), the 
probability of observing haplotype j (1 ≤ j ≤ n) in an individual g (gi, …, gn) with the genotype 
z was determined. The known frequency of haplotype j was taken as the prior probability 
Pr (gj), and the expected frequency of the genotype z in an individual gj with haplotype j 
was represented as Pr (z | gj). During normalization, the resulting posterior probability was 
divided by the total expected frequency of observing a genotype z in the population Pr (z), 
computed as the sum of the joint probabilities of the observing genotype z in any individual 
gi. Using Bayes’ theorem (Weir, 1996), the posterior probability that an individual g with the 
genotype z possess haplotype j is: 

This equation was used to compute for the posterior probability that a haplotype could 
account for a particular observation when the first two markers, SNP1 and SNP2, have been 
genotyped. The observed genotypes are listed in Tables 2 to 4. For each observation, the total
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number of possible genotypes and the haplotype combination with the highest probability 
of being observed with a particular genotype were identified. The probability of random-
ly observing a haplotype in an individual with an incomplete genotype was computed as 
the joint probability of all the possible haplotype combinations which included the said 
haplotype. The most-probable haplotypes for each incomplete genotype was then used to 
compute the corresponding offspring probabilities for all possible crosses in the population. 
 Given the condition that only the first two SNPs were genotyped, the array of off-
spring probabilities for all 45 possible crosses was computed by assuming HWE and the 
absence of recombination. From the inferred frequencies of the most likely haplotypes (H1, 
…, H9) for each observed genotype, the binomial expansion:

  (H1 + H2 + H3 + H4 + H5 + H6 + H7 + H8 + H9)
2 = 1

was used to calculate offspring probabilities, regardless of the sex of the parents.  non-missing 
genotypes for all SNPs.

RESULTS AND DISCUSSION

 Genotype frequencies observed in the data set are described in Table 1. A total 
of 40 unique genotypes were observed in the data set, with more than 90% non-missing 
genotypes for all SNPs. All markers were in HWE according to the χ2  goodness-of-fit test 
and the exact test for HWE in HAPLOVIEW.
 Given the six loci, eight haplotypes were manually identified by parsimony. TAG-
ACA, TAGGCA, CAGACA, and CGAACG were resolved directly from homozygotes 
whereas CGAACA and CGAAGG were resolved unambiguously from the single hetero-
zygotes. TAAACA and TAGACG were inferred from individuals with missing genotypes. 
The ninth haplotype T?AACG could not be identified with certainty by parsimony because 
of the missing information on SNP2.
 The same haplotype set was identified by HAPLOVIEW, with the ninth haplotype 
resolved as TGAACG (Figure 1a). Figure 1b shows the LD plot representing the degree of 
LD between any two markers. All pairwise comparisons had D’ >98%, except for SNP4 
versus SNP5 (D’=55%). Pairwise comparisons with SNP5 had relatively lower LOD values 
than those with the other loci. PHASE identified the same set of haplotypes from the data 
but gave the standard error of the haplotype frequencies (Table 2).
 The “observed” nine possible incomplete genotypes in the population represented 
45 possible complete genotypes. The non-zero frequencies of these complete genotypes 
were predicted for the given set of observed genotypes (Table 3). Incomplete genotypes 
have haplotype combinations that can be unambiguously predicted by Bayesian methods. 
The most likely haplotype for the remaining incomplete genotypes had relatively high 
probabilities (0.6431–0.9143) of being the “true” haplotype. The probability that a par-
ticular haplotype is sampled from individuals with a known genotype was 0.4010–1.000. 
Therefore, a minimum of two correctly-typed loci can be used to infer haplotypes from 
incomplete genotypes in a population under HWE.
 Non-zero frequencies of the complete genotypes were predicted for the given set of 
observed genotypes (Table 4). The most likely offspring were notably combinations of the 
most common haplotypes in the original data set.
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Figure 1. Haplotype block (a) with the 
 corresponding frequencies and LD 
 plot (b) for the six loci as computed 
 by HAPLOVIEW (Barrett et al., 
 2005). Numbers in boxes in (b) 
 indicate D’ values less than 100%.

a

b

 A single set of haplotypes was predicted for the dataset by rule-based and likeli-
hood-based algorithms. Parsimony provided a rapid method to identify haplotypes but did 
not consistently give the minimum number of possible haplotypes in the population. The 
efficiency of the parsimony approach is limited by the presence of incomplete genotypes 
and the available homozygotes in the population used to create the “resolved” haplotype set. 
Parsimony also does not consider the existing genotype frequencies when identifying hap-
lotypes (Niu, 2004). Algorithms based on likelihood probabilities are recommended despite 
the requirement of more computing power. The performance of EM methods in simula-
tion studies is not strongly affected by the departures from HWE. However, EM algorithms
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determine locally optimal maximum likelihood estimates and may not identify unique 
haplotypes with very low population frequencies. Bayesian methods share the strengths 
of EM methods but their robustness can be determined by computing for standard errors 
(Stephens and Scheet, 2005).
 The haplotype probabilities inferred from data with missing genotypes by Bayes 
theorem depend on prior information, such as haplotype frequencies in the population (Niu, 
2004). The relatively high probability of inferred haplotypes is due to the assumption of

Table 2. Haplotype counts and their corresponding frequencies as inferred by PHASE 
   (Stephens and Scheet, 2005).

Haplotype Observed Frequency 
in Population

Predicted Frequency 
in Offspring, E(freq) Standard Error

TAAACA 0.001869 0.001853 0.000420
TAGACA 0.425234 0.416989 0.002556
TAGACG 0.001869 0.001812 0.000257
TAGGCA 0.093458 0.098920 0.002123
TGAACG 0.000935 0.001008 0.000521
CAGACA 0.126168 0.128735 0.001542
CGAACA 0.004672 0.004686 0.000375
CGAACG 0.320561 0.320409 0.000534
CGAAGG 0.025234 0.025186 0.000256

Table 3. Most-probable haplotypes and genotypes of individuals with missing genotype 
   information (only 2 of 6 SNPs genotyped).

Observed 
Genotype

SNP1
TT TC CC

SNP 2 Genotype Haplotype Genotype Haplotype Genotype Haplotype
AA (10) (4) (4) (5) (1) (1)

TAGACA / 
TAGACA

TAGACA CAGACA / 
TAGACA

CAGACA CAGACA / 
CAGACA

CAGACA

0.6431 0.8019 0.8019 0.5 1 1
AG (4) (5) (13) (9) (3) (4)

TAGACA / 
TGAACG

TAGACA CGAACG / 
TAGACA

CGAACG CAGACA / 
CGAACG

CAGACA

0.8019 0.4010 0.7327 0.4568 0.9143 0.5
GG (1) (1) (3) (4) (6) (3)

TGAACG / 
TGAACG

TGAACG CGAACG / 
TGAACG

TGAACG CGAACG / 
CGAACG

CGAACG

1 1 0.9143 0.5 0.8359 0.9143
NOTE:  Numbers in parenthesis show total number of haplotypes/genotypes with non-zero probability of occur-
ring the population.
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HWE and the absence of recombination. Population substructure and mutations in SNP loci 
would drastically change the set of predicted haplotypes.  
 In conclusion, the analysis reveals that parsimony is the most rapid approach for 
predicting offspring haplotypes. However, stochastic approaches are recommended because 
they are less sensitive to departures from HWE in real populations. Bayesian methods are 
recommended over EM algorithms for the detection of unique haplotypes with very low 
population frequencies. Other statistical tools for the prediction of offspring haplotypes in 
higher-level analyses, such as genome-wide association studies, are beyond the scope of this 
study.
 Major advancements have been made in marker technology for progeny testing and 
offspring prediction. More genetic markers are associated with various traits, and individuals 
in populations can be efficiently genotyped for SNPs with minimum output and effort (Zhu 
et al., 2016; Schmid and Bennewitz, 2017). As more candidate genes are identified and 
included in commercially produced genetic marker panels (Bertolini et al., 2018), the power 
of these test kits must be evaluated  whether the same amount of information on the haplotype 
as well as the associated phenotype of an individual can be obtained with less genotype 
information. The analytical methods in this study could also be extended for models where 
recombination, population substructure, and other deviations from HWE are present in the 
population.
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